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ABSTRACT

We study the growth of radial perturbations during the collapse of homogeneous
spheres and discs. We model the sphere by concentric shells and the disc by
concentric rings, initially at rest and allowed to move only radially. Our numerical
experiments show only moderate growth in spheres but rapid growth in discs, leading
to pronounced ring formation. For a sphere, the perturbations can be treated
analytically as in cosmology. The growth rate is that of a power-law in time and
independent of scale. For discs, we present an analytic solution for the perturbations
using a suitable mode expansion. Shorter wavelength perturbations grow faster,
exhibiting exponential growth at early times.
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1 INTRODUCTION

Contrast the dynamical behaviour of two self-gravitating
equilibrium configurations of collisionless particles. The first
is a homogeneous spherical cluster in which the particles
move in randomly oriented circular orbits centred about the
origin. The second is a thin disc that one can imagine being
formed by squashing the sphere into the equatorial plane,
keeping the density homogeneous. Particles in the disc rotate
in circles confined to the equatorial plane. The key dif-
ference is that the sphere is stable to small perturbations,
while the disc is unstable. If we consider only radial perturba-
tions, the sphere is stable because the particles move at all
times in the 1/r potential of the interior matter, guaranteeing
stable orbits. The disc, however, is unstable to the formation
of concentric rings (see, e.g., Kalnajs 1972; Fridman &
Polyachenko 1984; Binney & Tremaine 1987). Once the
matter is perturbed into a ring, the ring potential dominates
locally over the potential due to the rest of the matter. Hence
the ring attracts more matter and the instability grows. The
sphere and disc situations are contrasted in Figs 1 and 2.

Now suppose that the circular velocities of the particles,
which are responsible for holding the systems in equilibrium,
are set to zero. Both configurations will then collapse
radially. In the presence of small radial perturbations, will
they behave in the same way as they did in equilibrium? In
other words, will the sphere remain stable and collapse
homogeneously, and will the disc be unstable to ring forma-
tion?

There has been some analytic work on the growth of
perturbations in collapsing spheres by Hunter (1962), who
performed a hydrodynamic perturbation calculation, includ-

ing the effects of pressure in a simple way. Unfortunately, the
analysis is difficult to carry over to collapsing discs. Instead,
we draw an analogy from the well-known behaviour of
perturbations in an expanding sphere discussed in big bang
cosmology. There we know that the evolution of perturba-
tions is described by two modes, one of which grows with
time, while the other decays. Both modes are non-exponen-
tial, and reduce to power laws in the simplest cases (see, e.g.,
Peebles 1980). If the situation is time reversed so that the
sphere is collapsing instead of expanding, we might expect
similar behaviour, that is, essentially power-law growth of
linear perturbations. The growth of perturbations during disc
collapse does not appear to have been discussed before.

We became interested in these questions in the course of
performing numerical calculations of gravitational collapse
of finite homogeneous spherical and disc systems in general
relativity. There, the collapse of a homogeneous sphere is the
simplest example of gravitational collapse, and is described
by an analytic solution (Oppenheimer-Snyder collapse; see,
e.g., Misner, Thorne & Wheeler 1973). The collapse of a
homogeneous disc is the simplest system that can generate
gravitational waves from a matter source. Solution of the disc
problem requires the full machinery of numerical relativity
(Abrahams, Shapiro & Teukolsky 1994). In performing such
relativistic simulations in axisymmetry, we observed little
tendency for radial perturbations to develop in spherical
collapse, but rapid growth of rings during disc collapse.
Before assessing this phenomenon in general relativity, we
want to clarify the situation in Newtonian gravity.

There have been a number of numerical studies of homo-
geneous spherical collapse, but most of them are not relevant
to the specific issue of pure radial perturbations in collision-
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Figure 1. Evolution of spherical shells in an equilibrium (& = 1) sphere slightly perturbed away from homogeneity. The unperturbed shells are
distributed so as to give essentially a homogeneous density profile (uniformly in »*; see Section 3). Small radial perturbations in their positions
are introduced as in equation (3.9). The radius of each shell is scaled by the radius of the outermost shell. Time is in units of the orbital period
given by equation (2.7). There is no evidence for clumping, and the configuration is stable.

less matter collapse. For example, Henon (1968) is interested
in the development of violent relaxation and virialization.
Hence the initial conditions contain a distribution of random
velocities so that particles do not move only radially. The
work by Standish (1968) and Arny & Weismann (1973) uses
N-body codes. As a result, discreteness effects induce non-
radial motions which ultimately dominate and lead to viriali-
zation and violent relaxation. While the effects are certainly
interesting for realistic systems, they do not help us under-
stand the specific question we are addressing.

In this paper, we build a simple numerical code to handle
spherical and disc collapse of collisionless matter in
Newtonian gravity. We take special care to ensure that when
unperturbed, the numerical integration scheme preserves
homogeneity during collapse. We then assess the growth of
radial perturbations when the matter distribution is initially
perturbed a small amount away from homogeneity.

We compare our numerical findings with an analytic
analysis of linear perturbations. The radial perturbation
equation is a partial differential equation in ¢ and r. Since the
unperturbed solution describes collapse, the coefficients in
the perturbation equation are time-dependent. It is thus not
obvious that one can effect a solution by separation of

variables. In the case of the sphere, however, separation is
possible because not only the unperturbed collapse but also
the perturbations themselves evolve homologously. The
underlying reason for this is Newton’s theorem: the force at a
point in a sphere depends only on the total mass interior to
that point. Thus a perturbation is not affected. For a disc, by
contrast, a local density perturbation changes the gravita-
tional potential at all points of the disc. It is therefore
somewhat surprising that the perturbation equation can be
separated. We show that expansion of the radial dependence
in a suitable set of modes allows such a separation. We find
that the resulting equation can be solved analytically for the
time dependence of the modes. We use this analytic solution
to explain why ring formation in a collapsing disc is much
more pronounced than shell formation in a sphere.

2 HOMOGENEOUS COLLAPSE
2.1 Spherical collapse

Consider a homogeneous equilibrium cluster of mass M and
radius R, consisting of particles moving in randomly
oriented circular orbits about the cluster centre. Now
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Figure 2. Evolution of rings in an equilibrium (& = 1) disc slightly perturbed away from homogeneity. The unperturbed rings are distributed so
as to give essentially the density of a disc formed by squashing a homogeneous sphere into the equatorial plane. Small radial perturbations in
their positions are introduced as in equation (3.9). The radius of each ring is scaled by the radius of the outermost ring. Time is in units of the
orbital period given by equation (2.7) with M~ 35 M /4. The perturbations grow rapidly, leading to significant clumping of the rings.

imagine that at =0 all of the velocities are instantaneously
reduced by a factor £. The resulting evolution consists of a
periodic oscillation in which the cluster remains at all times
homogeneous. The individual particles move in elliptic orbits
with the same period and eccentricity, but with different
semimajor axes. (This model was presented in appendix C of
Shapiro & Teukolsky 1985, where we used it as a weak-field
test of a general relativistic code. See also Shapiro &
Teukolsky 1993.) During the evolution, the density of the
sphere is given by

M

~ R (2.1)

o(t)

where R(t) is the radius of the sphere. The interior potential
atradius r< Ris

GM r
o=—771|3—7]) 2.2
2R (3 R') 22)
The equation of motion for R is
s GM ., h
=——=+§ —3. 23
e T 23)

Here h,=(GMR,)"? is the equilibrium angular momentum
per unit mass of a particle at the surface. When £=1, the
sphere is in equilibrium; when £=0, the sphere undergoes
radial collapse. Set

R=Rx(1). (2.4)
Then the radius 7 of each particle satisfies
r=ryx(t), (2.5)

where r, is the initial radius and x(¢) is given by the usual
parametric equations for an elliptic orbit:

x=a(l—ecosu),

P . P
t—z—n-(u esinu) > (2.6)

In equation (2.6), the semimajor axis, eccentricity and period
are given by
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Note that the collapse time is given by

i Ry |
== PE=0)=n|—22 ] 2,
tu)ll 2 1 (S O) J1:(8G1‘4) ( 8)

The radial and tangential particle velocities are given by

x

v,==r,

poit[OM|"
* Cx\ Ry

2.2 Disc collapse

Next, consider a disc formed by squashing the above sphere
into the equatorial plane while keeping the density homo-
geneous. The resulting system has a surface density given by

M "
= 1 - 2.10
’ 2nR” ( R‘) ( )
and an interior potential
3nGM r’
o=- 1-—5|. 2.11
4R ( 2R‘) ( )

This is the surface density and potential of a Maclaurin
spheroid with eccentricity e= 1. The evolution of the system
is given by the same analytic equations as for the sphere, with
the substitution

3n

M-—M 212
; @12

(Shapiro & Teukolsky 1994). In this case, the collapse time is
given by

3 1/2
tco":%P(E:O):n(—ﬁ_) . (2.13)

6nGM

3 NUMERICAL APPROACH

In constructing a numerical scheme to evolve the collision-
less matter, our goal is to minimize the introduction of
numerical errors leading to spurious inhomogeneities.
Simulation of a continuous homogeneous system using a
finite number of elements requires special care. We divide up
a sphere into N concentric shells, and a disc into N con-
centric rings. The force on each element is computed from
the difference between the potential at points mid-way to the
adjacent elements. The potential at the mid-points is com-
puted by adding up the contributions from each element. In
order to preserve the homogeneous profile, at t=0 we
position the elements at radii such that the potential mid-way
between each element is given by the exact analytic value

(equations 2.2 and 2.11). Since the analytic potential is
quadratic in radius, finite differencing the numerical
potential with respect to r? will give the exact analytic value
of the force on each element, that is, finite difference @ , as
2r® ,.. The entire system will then evolve in the same way as
a continuous homogeneous configuration, up to the preci-
sion with which the equation of motion of each element is
solved. Since the equations of motion are ordinary differen-
tial equations, they can easily be solved to very high preci-
sion. Note that our prescription for evaluating the force on
an element by means of a potential automatically in-
corporates the self-force on an element in a non-singular
way.

In the case of an equilibrium configuration (£=1), we
assign to each element a conserved angular momentum

il
= — . 3.1
h=&h, R, (3.1)
For £=0, each element has, of course, no angular momen-
tum.

In Section 4 below, we will discuss the subsequnt evolu-
tion of an unperturbed distribution of spherical shells or
equatorial rings set up according to the above prescription.
We will see that the motion reproduces the analytic solution
described in Section 2 to any desired accuracy. This gives us
confidence that when perturbations are introduced their
growth is not due to spurious numerical effects.

3.1 Numerical equations for sphere

The potential at a radius 7 for N shells at radii r,j=1,...,N,
each of mass m =M /N, is

d(r)=—-Gm . 1_ , (3.2)

r; >rrj r

where N, is the number of shells interior to . At =0, the
shell positions r; are determined by requiring that the poten-
tial given by (3.2) above be equal to the analytic potential
(2.2) at r=0 and the N — 1 mid-points

3+ 3.+ 1/3
r,-+1,2=(if—' . j=l.,N-L (33)

The reason that r* appears is that in the limit of large N the
distribution of shells becomes uniform in 7. Choosing this
prescription therefore gives a good sampling of the density
profile. Thus the N equations for the r; are

,N—1,
(3.4)

where we define r(,=0. We solve these equations with a
multidimensional Newton’s method (Press et al. 1992). The
equation of motion for the jth shell is

q)(”j+ l/z) leq,(_z,z) - ‘I’(”j+ 1/2) |eq.(2.2) =0, J=0,...

. h
r= —V(I)(r/)-i—?
]

_ _er[q’(rjrl/z)_@(rj—l/z)}+h_;’ (3.5)

T

7 _ 2
Vivipg = Tj-1p2
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where we have evaluated the gradient of the potential by
finite differencing in r? as described above. In equation (3.5),
we evaluate @(ry. /) by quadratic extrapolation in order to
give the correct force on the last shell.

3.2 Numerical equations for disc

The potential at equatorial radius r for N rings at radii r; is

_20m 5 Kik) (36)

()= ,
(r) 1 j r,~+r

where K is the complete elliptic integral of the first kind, and

2 4y
k ——(r,-+r)2' (3.7)

The procedure for finding the ; of the rings at £=0 is similar

to that used for the spherical shells, except that the mid-
points are defined by

2,2 \In
r,=(’—2+) j=1,.,N=1. (3.8)

Il‘lll'lllllll

Growth of perturbations 851

Here r? appears rather than r3, because the inner portion of
the disc is uniformly distributed in r? (equation 2.10). The
equation of motion for each ring has exactly the same form as
equation (3.5).

Note that @ is logarithmically divergent as r—r;. How-
ever, our prescription for calculating the force yields the
same finite value on a ring as in a continuous distribution.

3.3 Perturbations

The point of this analysis is to explore the growth of small
radial perturbations in the initial distribution. Accordingly, at
t=0 we displace each element a fractional amount

(—SL/=£, (3.9)

Ty
where, for each j, ¢ is randomly chosen in the interval
(=1073,1073).

Figs 1 and 2 were obtained by inducing such perturb-
ations. With no perturbations, each frame would be identical
to the frame depicted at t=0.

IIIIIIIIIIlIl

Figure 3. Evolution of spherical shells in a collapsing (&=0) homogeneous sphere. The shells are distributed so as to give essentially a
homogeneous density profile as described in Section 3. The radius of each shell is scaled by the radius of the outermost shell, which has moved
in to about 1/3 of its initial value in the last frame shown. Time is in units of the collapse time-scale given by equation (2.8). There is virtually no
change in the scaled positions of the shells. To high accuracy, the numerical method introduces no spurious fluctuations and preserves

homogeneity.
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Figure 4. Evolution of rings in a collapsing (€ =0) homogeneous disc. The rings are distributed so as to give essentially the density of a disc
formed by squashing a homogeneous sphere into the equatorial plane. The radius of each ring is scaled by the radius of the outermost ring,
which has moved in to about 1/3 of its initial value in the last frame shown. Time is in units of the collapse time-scale given by equation (2.13).
As for the sphere shown in Fig. 3, there is virtually no change in the scaled positions of the rings. To high accuracy, the numerical method

introduces no spurious fluctuations and preserves homogeneity.

3.4 Numerical checks

We have already described one check of the code: reproduc-
ing the analytic solutions of Section 2 for unperturbed
systems. This applies to collapsing as well as to equilibrium
discs and spheres. Total energy conservation provides
another check, and it is applicable even when there are
perturbations and when those perturbations grow non-
linearly.

4 NUMERICAL RESULTS

Figs 3 and 4 show our results for the unperturbed collapse of
a homogeneous sphere and disc, respectively. As expected,
the collapse is perfectly homologous, and no spurious
density fluctuations arise. In these calculations, we used 60
elements. Energy is conserved to better than 3 per cent. Most
of the error occurs late in the evolution when the energy is
computed as the small difference of large numbers.

Figs 5 and 6 show the results for the same collapse, but
with small perturbations introduced at =0 as described in
Section 3. From the figures it is quite evident that the growth
of perturbations is much more pronounced in the case of the
disc than the sphere. This is similar to the situation we found
in Figs 1 and 2 for the perturbed equilibrium configuration.

To quantify this behaviour, we computed a simple correla-
tion statistic to measure the extent to which the elements
clump together during collapse. In Fig. 7, we plot, at selected
times during the collapse of the sphere, the number of shells
N . whose nearest neighbour is within a volume AV, Fig. 8
shows the same plot for disc collapse, but for rings with
nearest neighbours within an area AA. We see that at t=0
the curves in each plot are both nearly vertical, since the
elements are close to being uniformly spaced in volume or
area for a homogeneous configuration. At later times, the
growth of perturbations is appreciably more rapid for discs
than for spheres, as we see from the more rapid rise of the
curve at small separations.
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Figure 5. Evolution of spherical shells in the collapsing (& = 0) sphere of Fig. 3, perturbed according to equation (3.9). The perturbations grow

very slowly, and are only noticeable toward the end of the collapse.

5 ANALYTIC DERIVATION

To try to understand the observed difference in the growth
rates for collapsing homogeneous discs and spheres, we now
analyse the growth of perturbations in these configurations
analytically. The case of an expanding sphere has been
treated extensively in the context of cosmology. Here we
recast the problem to treat a collapsing sphere. The case of a
disc has not been treated before. The key reason why the
sphere is so amenable to analytic solution is that the force on
a mass shell depends only on the interior mass. Since the
force on a ring in a disc is not just a function of the interior
mass, it is somewhat unexpected that the disc case can in fact
be solved analytically.
The equation of motion for a mass element is

dv
—=-Vo. 5.1
7 (5.1)
The change induced by a Lagrangian displacement & is
governed by the perturbed form of equation (5.1):

dv_d’§

—=—=—AVO. 5.2

dr ds’ (5:2)

Note that in the rest of this paper & will denote the Lagran-
gian displacement and not the angular momentum parameter

introduced in equation (2.3). Using the identities for Lagran-
gian perturbations in, for example, section 6.2 of Shapiro &
Teukolsky (1983), we get

4

dt§=—V6<b—(§‘V)VCD, (5.3)

where

b =— J %_ d3x/=GJ VA 8) gy (5.4)
vix—x| v lx—x|

For radial perturbations, equation (5.3) becomes

5

. 0 0°

=——0P-§— . .
R (5.5)
5.1 Sphere

For radial perturbations of a homogeneous sphere, the
gradient of equation (5.4) gives

—0P=——7"§. (5.6)

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995MNRAS.276..847L

FT9O5WNRAS, Z76- ~847L !

854 W. Landry, S. L. Shapiro and S. A.Teukolsky

E=E§ II|I||II1||IT

lllllllljllll

b

| ‘
o 2 4 6 8

Figure 6. Evolution of rings in the collapsing (& =0) disc of Fig. 4, perturbed according to equation (3.9). The perturbations grow rapidly, and
there is significant clumping of the rings. This is in contrast with the sphere in Fig. 5.

(see, e.g., exercise 6.5 of Shapiro & Teukolsky 1983). The
homologous nature of the collapse suggests that we look for a
separable solution of the form

2 AW e) (5:7)
where
zEr/R‘ (58)

Note that, by virtue of equations (2.4) and (2.5), z is in-
dependent of time. The left-hand side of the radial perturba-
tion equation (5.5) becomes

E=A(1)RZ(z) +2A(t) RZ(z) + A(t) RZ(z). (5.9)
Using equations (2.2) and (2.3), we get

9’ GM R
Eon0=E =i (5.10)

Combining equations (2.8), (5.6), (5.9) and (5.10), equation
(5.5) becomes in final form

. X T A
A +24(n F= 3T Al
X 8tmll X

(5.11)

Note that Z(z) cancelled out: perturbations are independent
of scale.

Equation (5.11) is the standard equation for cosmological
perturbations with zero pressure (see, e.g., equation 11.1 of
Peebles 1980). The two linearly independent solutions
(Peebles 1980, equations 11.26 and 11.27) can be written in
the form

3 _3ncostnf2)

A=—1+ , 5.12
: sin’(n/2) 2 sin’(n/2) (5.12)
cos(n/2)
A,= . 13
* sin’(n/2) (5:13)
For a sphere expanding from zero radius
R \'2
= —si <7< .
r (SGM) (n=sing)  (0<n<m), (5.14)
while for a sphere contracting from finite radius
R3 1/2
t=(8GM) (p—m—sinn) (t<n<2m). (5.15)
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Figure 7. Correlation statistic for the collapsing shells depicted in Fig. 5. We plot the number of shells N whose nearest neighbour is within a
volume AV, The abscissa AV is normalized to the mean volume per shell, (A V)= V[N, where V is the total volume of the sphere. Each curve
corresponds to a time shown in Fig. 5: £=0 (solid line), = 0.3 (dotted line), 1= 0.6 (short-dashed line), and #=0.9 (long-dashed line). At r=0,
the curve is nearly vertical, since the shells are close to being uniformly spaced in volume. At early times (dotted line), there is very little growth
of perturbations. At late times, there is a small amount of clumping, as measured by the increase in the number of shells with close nearest
neighbours.

N./N

AA/<DA>

Figure 8. Correlation statistic for the collapsing rings depicted in Fig. 6. We plot the number of rings N . whose nearest neighbour is within an
area AA. The abscissa AA is normalized to the mean area per ring, (AA)= A /N, where A is the total area of the disc. Each curve corresponds
to a time shown in Fig. 6: 1= 0 (solid line), t=0.3 (dotted line), 1= 0.6 (short-dashed line), and r=0.9 (long-dashed line). At =0, the curve is
nearly vertical, since the rings are close to being uniformly spaced in area. By contrast with the sphere in Fig. 7, even at early times (dotted line)
there is substantial growth of perturbations.
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For an expanding sphere, at small ¢, and hence small #, the
solutions reduce to the familiar growing and decaying modes

Al~t2/3’ "42~t_l (t<<tcoll)' (516)
For a collapsing sphere, at small ¢ the modes are
3n’ ¢
A~ l+——, Ay~ (t<<tcoll)' (517)
16 [coll

This is the case that we have explored numerically in Section
4. The numerical results are consistent with the modest
power-law growth of the models in equation (5.17). Eventu-
ally, the linear perturbation approximation breaks down: at
late times, equations (5.12) and (5.13) predict

1

A ~A,~
t—tcoll

(2= t.o)- (5.18)

This is in agreement with the result obtained by Hunter
(1962) for late times.

5.2 Disc

The analysis of disc perturbations proceeds similarly to that
of the sphere. Equation (5.3) remains valid for radial
perturbations. Integrating equation (5.4) over the disc thick-
ness, we obtain

6<D=—GJ'L,d2x'. (5.19)
lx—x'|

The key difference between perturbations in a disc versus
a sphere is that the growth of disc perturbations is not
independent of scale. Accordingly, it is necessary to decom-
pose the perturbation into modes and examine the time
dependence of each mode separately. Following Kalnajs
(1972), who explored the stability of equilibrium discs, we
expand the density perturbation in a complete set of
functions using Legendre polynomials:

do= ) 60,=—3A—43 > b,(21+1)P’(y), (5.20)
leven 2J'ER 1=2.4.... y
y={l-z". (5.21)

The form of the coefficients in the expansion (5.20) is
chosen for later convenience. We will see below that only
even [ with /#0 is allowed in the expansion; otherwise the
corresponding Lagrangian displacement would diverge at
the edge of the disc.

The Lagrangian displacement is related to the density
perturbation by (cf. Shapiro & Teukolsky 1983, equation
6.3.9)

00,=—V-(d§,). (5.22)
We integrate both sides of this equation to get
R [P bR
&= ‘—J' M zdzb(21+1)= - (P i(y) = Proa(y)].
Yjo Y zy
(5.23)

Here /=0 is excluded for the integral to be finite at y=0.

We again look for a separable solution of the form in
equation (5.7)

&

R =A(1) Z/(z), (5.24)
where now equation (5.23) suggests that we try

P, -P_
Z,(d:JM. (5.25)

zy

For Z to be regular at y=0, / must be even. For even /, Z (z)
is regular everywhere; in fact, it is just an odd polynomial in
Z:

Z/(z)=P/+|()’)Z;P/—|<)’)

_ odd polynomial in y
2y

(5.26)

_even polynomial in z
- .

To find the constant term of this even polynomial, we
evaluate it when z=0:

Piiy)=P(y)|  _Pis(y) =Py ()]
y 2=0 y |y=1

=0+ O(z°).
(5.27)
Thus Z/(z)is an odd polynomial in z.
The advantage of using this expansion for the perturbation

is that the corresponding potential is expressible in closed
form (Kalnajs 1972, equation 8):

_ 3nGMA,(t)

od,= T PPy bi21+ 1) (5.28)
_2 )+ n/2)|°
P=3 [r[1/2+1]} ' (5.29)

For the radial perturbation equation (5.3), we need the
gradient of 6@ ,. Using the identity

dP(x) 1 [(I+1)

dx =x2_1 20+1 [Prer(x) = Py (x)],

(5.30)

together with equations (5.21) and (5.24), we obtain

M. +
Vo, = — STCMA(p bll+1)

[P/H(}’)_P/—l()’)]

4R’ 2y
3nGM
= _4—R3—p’l(l+ 1)é&,.

Using equation (5.9) and the analogue of equation (5.10) with
M~-3nxM[4 in the radial perturbation equation (5.3),
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together with equations (5.24) and (5.31), we obtain

3nGMA, (1) p,

A1) RZ/(2) %241 RZ/2) =~ 03

Y11+ 1) Z,(2).
(5.32)

More simply, using equations (2.4) and (2.13), we get

n A ( )

coll

A+2= A, pl(l+1). (5.33)

We immediately recognize that for the lowest mode /=2,
the dynamical equation (5.33) is identical to equation (5.11)
for a sphere. In the case of a disc, this mode just represents a
homologous contraction or expansion. As we found previ-
ously, its growth rate is simply a power law in time (equation
5.17). While any perturbation of a sphere behaves in this
way, for a disc the higher / modes grow much faster. For large
1, the use of Stirling’s formula in equation (5.29) yields

pl(l+1)~4l/xn. (5.34)

Clearly, the driving term on the right-hand side of equation
(5.33) grows with increasing /, and hence high-/ perturba-
tions will grow faster than low-/ perturbations.

To solve equation (5.33) exactly, we first express it solely
in terms of x(¢) using equation (2.6), (2.7) and (2.13).

d’ A+3 4xdA w'A

1 =3, . 5

T PR (5.33)
" +

w-sw. (5.36)

This is very similar to the hypergeometric equation:

5

du
1- )
x(1-x) T

—-(l+,u+1)x]d—u—/l,uu=0. (5.37)
dx

If we set A=x7B, where y is for the moment an arbitrary
contant, then equation (5.35) becomes

d2
x(1—1x) li —(2y+2)x]d—B
dx dx

+ :1;()/2+y/2—w2)—y(y+1) B=0. (5.38)

So, if we choose y?+ y/2 — w?=0, we have a hypergeometric
equation with parameters

A=y, u=y+1, v=2y+3/2,
=} -1+ 1+16w. (5.39)

We are interested in the initial growth of the perturbation,
when x is close to unity. Hence we choose to write the two
independent solutions to the hypergeometric equation as
expansions in (1 — x) (Abramowitz & Stegun 1964, equations
15.5.5and 15.5.6):
uy=FA,u,A+p—v+1;1-x), (5.40)
Uy =(1=x)""* "0 F(v=A,v—p,v=A—u+1;1-x)

(5.41)
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Note that we can take only the positive square root for y in
equation (5.39). Choosing the negative root simply inter-
changes the solutions (5.40) and (5.41) (Gradsteyn & Ryzhik
1980, equation 9.131.1). Thus the final explicit form for the
amplitudes is

AL x)=x""#+14 F (= 1/4+h/4,3/4+ h[4,1/2;1—x),

(5.42)
Ayl x)=x~ VAT —x JF\(5/4+ /4, 1/4+h[4,3/2;1~x),
(5.43)

h={1+16w". (5.44)

Figs 9 and 10 show the growth of the displacement & (¢) as
a function of /, assuming d§/d¢=0 initially. In Fig. 9, the
initial spectrum of modes is chosen to be the same as the
perturbation determined by equation (3.9). In Fig. 10, the
initial spectrum is chosen to have a flat distribution. It is clear
in both cases that the higher modes grow much more quickly
and soon dominate. By contrast, all modes in the sphere
behave in the same way as the /=2 mode of the disc. Since
an arbitrary disc perturbation will include higher / modes,
the difference in the growth times is now easily understood.

To quantify this behaviour, we look at the large-/ limit of
the disc amplitudes. For large /, equations (5.34), (5.36) and
(5.39) imply

y~h/4~J2]/n. (5.45)
Using Gradsteyn & Ryzhik (1980, equations 9.121.9 and

9.121.10), we can rewrite equations (5.42) and (5.43) for
large / as

Al x)~ x coshy81(1—x)/x, (5.46)
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Figure 9. Analytical growth of modes in a collapsing disc. The
weighting functions g, are related to the initial perturbation spec-
trum prescribed by equation (3.9). They are the rms values of the
coefficients that arise when a random spectrum with variance o2 is
expanded in terms of the functions Z,(z). They are normalized so
that g, = 1. For comparison, the only mode present in the sphere is
I=2. Higher order (shorter wavelength) modes grow much more
quickly and soon dominate.
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Figure 10. Growth of modes described by equation (5.42). This
corresponds to a flat initial spectrum. It is similar to Fig. 9, implying
that the result does not depend strongly on the details of the initial
perturbation. The highest modes always dominate.

~xm SithSl(l_X)/ﬂ:

Al x) (5.47)
J8I1(1—x)/n
At early times, equation (2.6) implies
at |’
~1-={—. 5.48
g (4tcoll) ( )

Therefore, for {/(1 — x)>> 1, the solutions become exponen-
tials in time:

AL 1) ~% exp(\/nl/Z L), (5.49)
Lol t

AL, £) ~ s (J 12 —). 5.50

i PV (5:50)

Thus, while arbitrary radial perturbations for a collapsing
sphere have power-law growth times, disc perturbations have
exponential growth times. This accounts for our numerical
results. When a homogeneous sphere undergoes gravita-
tional collapse, the slow growth of spherical shells is only
discernible at late times. The rapid growth of rings during
disc collapse becomes evident almost immediately.
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